

U. S. DEPARTMENT OF AGRICULTURE
 WEATHER BUREAU
 Washington, D. C.

ATLAS

OF

CLIMATIC CHARTS OF THE OCEANS

Prepared under the supervision of
WILLARD F. McDONALD, Principal Meteorologist
In Charge, Weather Bureau Office, New Orleans, La.

Derived directly and exclusively from original weather observations recorded on ships at sea and collected in the files of the UNITED STATES WEATHER BUREAU

Compiled and summarized in projects of the
UNITED STATES CIVIL works Administration, 1934
and the
United states works progress administration, 1936-1938

$\because \because \because: \because$

UNited states

Introduction.-.The observations..Instruments and methods of ohservation.Definitions and scales.The compilation.Numher of ohservationsMethods of compilationFrequency isogramsExplanation of the chartStudies of winds.Visibility factors
Cloud forms.iv
Rainfall and thunderstorms Studies of temperatures.
cknowledgmentsivv
rTITLES OF CHARTS
Tumher and distrihution of ohservations 3-14
redominant wind directions, constancy, and forces, by months 15-26
Resultant wind direction and force, by month
Average wind relocities in knots, hy seasons
31-34
31-34
Arequency of dead calms, hy seasons. 35-46
Fequency of winds reaching or exceeding Beaufort force 7, hy months47-50
Frequency of winds reaching or exceeding Beaufort force 8, with gale roses, hy seasons. $51-54$
$55-58$
Fog, hy seasons 55-58
Haze, hy seasons $59-62$
$63-66$
Exceptional horizontal visibility, hy seasons 67-70
Arerage cloudiness, by seasons.- 71-94
Rain, hy seasons
$95-106$
$107-110$
$95-106$
$107-110$
Rain, hy seasons-..-..-----111-114
Depression of the wet hulh, by seasons. 115-126
Difference hetween air and sea-surface temperatures, North Atlantic and North Pacific Oceans, hy seasons. 127-130(II)


```
            O:
毋ด
```


PREFACE

The charts in this atlas have been derived from approximately $51 / 2$ million observations taken on ships at sea during a period of more than 50 years. Data from islands and continents have not been introduced; in fact even the observations in port have been excluded in order that the material (confined strictly to ships' reports collected in the Weather Bureau) may be truly representative of conditions on the open sea. In that respect this volume is unique. Heretofore nearly all charts of this character, which have covered a major portion of the earth's surface, have depended chiefly on observations from islands and continents, and have utilized misellaneous studies of ships' reports from various sources.

Those who have a practical use for the information presented in these charts will be appreciative of the labors of many thousands of persons who have contributed to the final results. The climate of a major portion of the earth's surface cannot be presented adequately until thousands of observers have gone to their posts daily in all kinds of weather for a long period of years, often without any pay except a word of appreciation from those who collect the observations. In this kind of work the mariner excels because of the nature of his occupation.

Some of the weather observations which have gone into these charts were taken prior to 1880 . Since that year they have been arriving in increasing numbers. In the earliest part of the period many observations came from sailing ships, but in later years almost exclusively from self-propelled vessels. Some have been supplied by the navies of the world but the great bulk of the reports has been furnished by merchant ships carrying the flags of every maritime nation.

Even when these millions of observations had been supplied through the cooperation of the mariner, an enormous task lay ahead. Some of the report sheets had only one observation, but the majority contained several which had been taken at different positions duriag voyages. They had to be separated, transcribed to individual slips or cards, reassembled by months and ocean squares, and then tabulated and summarized. This task was so great that it was impossible for the Marine Division of the Weather Bureau to summarize completely more than a small fraction of the observations as they were received, to say nothing of treating as a whole the mass of reports that had been accumulating for years.

Credit is due to the Civil Works and Works Progress Administrations for supplying the funds to employ competent workers in sufficient numbers to accomplish this great task. Practically all of the work of sorting, compiling, and summarizing the observations was done by persons secured under the ordinary terms of employment in these agencies. Even the preparation of the finished drawings for the lithographer, precisely as they appear in this atlas, was accomplished by employees regularly detailed to the project.

At every stage in the operations the work was supervised by W. F. McDonald, who, at the beginning of the project, was the Chief of the Marine Division of the Weather Bureau at Washington and more recently has been and is now in charge of the forecast and marine center at New Orleans. Every detail of organizing the material and personnel, and of the work of compiling the data in a form suited to charting was developed under his personal direction. Without exception, he also prepared the preliminary charts which were used as copies for the finished drawings. In an appropriate place he acknowledges the assistance of those who were associated with him in the undertaking.

It is hoped that the information revealed in these charts will be of such benefit to navigation of the seaand the air over the sea-as to justify the patient efforts of the thousands of seamen who have supplied records of the weather on the oceans through these many years.
C. C. Clark,

Washington, October 1, 1938.
Acting Chief, Weather Bureau.
atlas of climatic charts of the oceans
By Willard F. McDonald

INTRODUGTION

collecting ohservations for the oceans is due in a very large measure to Matthew F. Maury. He hegan a systematic collection of ships' logs in 1841. His work had a profound effect upon ocean commerce of the latter half of the nineteenth century and is the foundation of the pilot charts of the present day. Maury's material formed a very important part of the the prork the meteorology of the oceans. His physical geography ${ }^{5}$ and sailing directions were celehrated works of the time hut do not give an adequate conception of the importance of Maury's lahors. One must an ardequate conception of the importance or
examine the Pilot Charts of the Hydrographic Office of the present day to understand the practical significance of Maury's cfforts.

It is necessary, however, to go hack nearly to the beginning of the nineteenth century to find the hasis of practical weather records at sea. If seamen had continued to descrihe the winds and weather in thcir own terms, or hy different scales, the data would have heen in a chaotic state, very difficult of reduction to useful averages. In 1806 Francis Beaufort devised a scale of wind force which was revised in 1807 to include in addition to calm, 12 graduations of wind force. His weather notation also appears to have heen devised in 1806 . ${ }^{\circ}$ Both these scales came into general use. The Beaufort wind scale continues in almost universal use today, without important changes since 1507 . The weather notation suffered many changes; for example, the letter " s ", originally signifying "sultry", was changed to "hard squalls" between 1820 and 1825 , and later was used to indicate "snow." Fortunately, during the period when observations used in this atlas were heing taken, there were no important changes in the Beaufort scale of notation and seamen were preparing records with uniform scales for entry of wind and weather which make their records of ohservations comparahle.

Since the publication of Bartholomew's Atlas in 1899, a numher of excellent regional climatic maps of the oceans have appeared. Noteworthy examples are the charts of the China Seas ${ }^{7}$ and other regions, produced in the Netherlands, and the puhlications of the Deutsche Seewarte at Hamhurg and the British Meteorological Office in London. Data for the North Pacific Ocean have heen puhlished hy the Imperial

 looical observationg in the china seas ano in the westeni fart of the north pacteic Loorcal onsenilations n
ocean. Debit. 1936.

THE OBSERVATIONS

INSTRUMENTS AND METHODS OF OBSERVATIONS
In some respects it is fortunate tbat the simple routine of weather observation at sea has been standardized through many years without much reliance on iostruants other than the barometer and thermometer.

The Beaufort scale of wind force has not been altered in any significant detail in more than a century. Before steam navigation developed the scale was based on the effects of winds on sails; since that time the estimates of Beaufort forces have of the sea. The latter are so complex that they have never been satisfactorily of the sea. The latter are so complex that they have never been satisfactorily
teduced to a series of specifications like those for the effects of winds on sails; neverreduced to a series of specincations bike those for the effects of winds on sails; never-
tbeless, the relationship between varying wind forces and the appearance of the sea surface seems to be just as accurately fixed in the minds of experienced seamen on steamships as was the effect on sails in the experience of their predecessors.

In only one respect is there evidence of a systematic difference between the xind observations on sailing ships and those on vessels moving under their own power. The number of dead calms recorded is undoubtedly less since steamships the decks even when the atmosphere is calm, with a corresponding tendency away from the recording of Beeufort 0, the dead calm, wbich made itself inescapably obrious to the observer on a sailing ship.

The direction of the wind given in ships' weather reports is the true wind and not the apparent wind that results from the combined movements of the ship and the atmosphere. The true direction has usually been determined by observing the offect of the wind on the sea surface. Tables are provided to seamen, however, for calculating the true from the apparent wind.

In general, it is possible to say that observations of wind at sea are the most uniform and most generally reliable data contained in the records treated in this work.

Wind direction has generally been recorded in points of the compass with the eight major points definitely farored orer those intermediate. In some instances directions have, however, been recorded in degrees of azimuth, or in code values, or the international scale. All tabulations were made in terms of the 16 -point
compass, and where there was greater refinement in ships' observations, the record compass, and where there was greater refinement in ships" observations, the record by E ", or " 05 " in the international figure code, or " 56 "" in the azimuth scale, was counted as "NE".

Marine Observatory at Kobe. The Pilot Charts of the United States Hydrographic Office contain meteorological data for the navigahle oceans of the world.

The charts presented hereafter show the climatic conditions pertaining to the ocean surfaces only. For climates of the continents the reader may consult a considerahle number of recent puhlications ${ }^{8}$ which summarize the available land data.

Pronounced geographical and seasonal variations are evident in the phenomena shown on the charts which follow. Continental influences are more effective over adjacent oceans in the Northern Hemisphere than in southern latitudes hecause the proportion of land to ocean is so much greater north of the Equator. The seasonal march of conditions proceeds in the opposite sense in the two hemispheres.

There are clear evidences, even from a casual inspection, of the interrelations of the various phenomena charted. For example, the season of the southwest monsoon in the region hetween Africa and India, as shown on some of the charts, is accompanied hy a great increase in the frequency of haze, as shown on other charts, undoubtedly the result of fine dust carried from the adjacent continents. On the appropriate charts may he seen the prevalence of fog in certain parts of the northern oceans in summer; other charts show that warm winds blow over relatively cold waters to produce these fogs. The bold elcvation of the Andes extending along the entire west coast of South America, together with the adjacent extensive drift of cold water northward in the South Pacific Ocean, form a comhination of influences that makes itself evident in many of the charts.

It is not within the scope of this atlas to attempt an explanation of the phenomena and their variations. A careful study of the charts will demonstrate, however, that the ohservations supplied hy seamen have not heen careless or perfunctory; otherwise, the seasonal and geographical variations and the interrelations of the various elements would not he so consistently in evidence.

90, 1934 . Washington. KEndew, W. G. cu
 aenden, W. G. climates of the continents. Ed. 3, Oxford. 1937.
 and Northern Asia; v. 4, Southern Asia and Australia; v. 5 , Africa and the Oceans, (In course of puhlication in parts.)
 In addition there are numerous pullications on local and regional elimatology, including

the temperature of sea water drawn rapidly into condensers in the engine room through an intake not far below the sea surface. In preparing charts for this atlas, the sea temperatures were all combined into one tabulation without regard to the method of observation employed.

definitions and scales

The scale of wind force devised by Beaufort and his letter notations for description of general states of weather were, with few exceptions, used for recording the tion of general states of weather were, with few exceptions, used for recordal Code
observations dealt with in this atlas. After 1929 figures of the International began to replace the Beaufort weather notation for recording observations on ships that reported by wireless telegraph. Only a small fraction of tbe total was recorded in the International Code, however, and no noteworthy difficulties in compilation resulted.

The Beaufort scale for wind force is preserved without change in the International Code, hence continuity in use and meaning of this element has not been interrupted at any time within the period of records underlying the work. For ready reference, specifications of the force scale agreed upon by the Conference on Maritime ship), together with a description later formulated to show the graduated effects of similar variations in wind speed on land, are given in table 1.

As sailing vessels were displaced by self-propelled ships, seamen of necessity adopted other grounds of judgment than the action of the wind on sails, but the transition was gradual, and tbere is no evidence whatever that the meaning of the Beaufort graduations suffered any change. One suthority, ${ }^{\text {b }}$ in a discussion of this matter, says:

The ssilor's estimate of the wind as used in his ordinary conversation is hased on its cffect on his surroundings, on the waves formed on the surface of the sea, on the amount of hroken water, on the sound produced as it hows through the riggiog, and on the way his ship can stand up to if definitions. The rig of ships has changed, saill has heed replaced hy steam, hut the effect of th wind on the sea has remained, and will always remain, exsectly the same. The sailor's description of the streogth of the wind being based on effects independent of the rig of his ship has survived all the changes in marine transport.

- Stmpson, Sir George C. tee velocity equivalents of the beatfort acale. Brit Met. Off. Prof. Notes No. 44. 1926.

Table 1.-Specifications of the wind force scale agreed upon by the Conference on
Maritime Meteorology at London in 1874^{1}.

tration of	Deepesce ertherion, 188, laternetioana	stations
Calm Light air.............	Juat sufficient to give steerage way to a full-rigged sbip.	Calm; smoke rises vertically. Direction of wind sbown by smoke drift, but not by wind vanes.
Light breeze	Tbat in which a well conditioned man-of-war with all sail set and clean full, would go in smooth water from 1 to 2 knots.	Wind felt on face; leaves rustle; ordinary vane moved by wind.
Gentle b	Tbat in which a well conditioned man-of-war with all sail set and clean full, would go in mooth water from 3 to 4 knots.	Leaves and small twigs in constant motion; wind extends light flag.
Moderate br	Tbat in whicb a well conditioned man-of-war with all sail set and clean full, would go in amootb water from 5 to 6 knots.	Raises dust and loose paper; small branches are moved.
Fresb bre	That to wbich she could just carry in chase, full and by, royals, ete.	Small trees in leaf begin to sway; orested wavelets form on inland waters.
Strong hre	That to which sbe could just carry in cbase, full and by, topgallant sails.	Large branches in motion; whistling heard in telegraph wires; umbrellss used witb difficulty.
Moderate	Tbat to wbicb she could just carry in ehase, full and by, topsails, jih, ete.	Whole trees in motion; inconvenience felt when walking against wind.
Fresb ga	Tbat to which she could just carry in chase, full aud by, reefed upper topssiis and courses.	Breaks twigs off trees; generally impedes progress.
Strong gale	That to wbich she could just carry in cbase, full and hy, lower topsails and courses. That with which she could scarcely hear lower maintop. sail and reefed foressil. That which would reduce ber to storm staysails. That which no eanyas could withstand.	Slight structural damage occurs (chimney pots and slates removed).
Whole g		Seldom experienced inland; trees uprooted; considerable structural damage occurs.
Hurricane		Very rarely experienced; aceompanied by wide-spread damage.

. Metorological Glossary. London. 1930
Since estimates of wind foree in the Beaufort seale rest upon the eommon experience of men at sea, and are based upon the total effect produced by the atmosphere in motion rather than on measurement in a partieular spot, there is an essen
tial difference between Beaufort estimates and measured wind speeds. Many eflorts have been made to formulate Beaufort values in terms of miles per hour meters per second, or knots, with varying suceess, and in the very nature of the ase, any scale of conversion will leave something to be desired.

Nevertheless, the conversion of average Beaufort values into a linear scale of wind speed makes for the readier comparison of variations in wind movement over different parts of the oceans. Average Beaufort forees have, therefore, been eval ated and eharted as equivalent speeds in knots. The conversion table used (which vas obtained by adjustment within the values given by the Smithsonian Meteoro in table 2 .

Table 2.-Conversion from mean Beaufort values for wind force, to speed in knot

$\underbrace{\substack{\text { values } \\ \text { fortseale }}}_{\text {Mesan }}$	Espeal in koots		Epred in tools
1. 2 or less	Less than 2	4. 0-4.1	14
1. 3-1.5		4.2-4.3	15
1.6-1.8	4	4.4-4.6	16
1.9-2. 1	5	$4{ }^{6} 6.4 .7$	17
2. 2-2.4	5	4.8-4.0	18
$2.5-2.7$	7	5.0	19
2. $8-2.9$	8	6. 1-5. 2	20
3. 0-3. 2	9	5.3-5. 4	21
3. 3-3.4	10	5. 5-5.6	22
3. 5-3.6	11	5.7-5.8	23
3. 7-3.8	12	5.9-6. 0	24
3.9	13	6.1	25

The Beaufort weather notation in the form agreed upon in 1874 is given below. Beaufort's original weather notation was frequently cbanged in the early years, and any five letters retain their original mennings until this day. It may be assumed, zed in the obseryations or lerlying this atlas, which are for the most part dated later than 1885.

b. Blue sky.	p. Passing sbowers.
c. Cloudy sky (detached clouds).	q. Squally.
${ }_{\text {d. }}^{\text {d. Drizzling. }}$ f. Fog.	r. Rain (continuous).
f. Fog. g. Gloomy.	s. Suow.
h. Hail.	u. Ugly threatening sky.
1. Ligbtning.	v. Exceptional visibility.
e. Overeast sky.	w. Dew.

A strong point in the usefuiness of the Beaufort weather notation eonsists in the ase with which letters can be combined to make a comprehensive description of a complex weather condition. For instance, should an observer have an overeas described by und the broken with notch olos atmosphere, the three letters, "epv," suffice. The records contain a vast number of sueb combination entries; this fact supports the belief that seamen have, as a rule been careful to record their whole impression of the general weather situation attending the other more partieular matters of observation.

While satisfaetory uniformity ean be attributed to reeords in the notations under discussion, it would be erroneous to assume that the international definitions hav at all times been applied with eomplete preeision. Some diffieulties deserve brief mention.
The

The definitions for "fog," "mist," and "haze" prescribe certain limits of visibility as eriteria for use of the terms. Fog and mist are defined as due to the presenee
of mieroscopic droplets of condensed noisture; the condition is dearibed es "fog" of mieroscopic droplets of condensed nuoisture; the condition is described as "fog" is from I 100 to 2,200 yards. Haze is defined as in the atmosphere, sueh as smoke, dust, or salt, with visibility 1,100 to 2,200 yards.

There is good ground for the belief that seamen, like landsmen, put less definite meanings into these three terms, so that, in the collected masses of observations, "fog" beeomes roughly equivalent to the "dense fog" or "moderate fog" of the con-
tinental meteorologist: "mist" is similar to "light fog"; and "haze" is used to reeord tinental meteorologist; "mist" is similar to "light fog"; and "haze" is used to reeord
either of two distinet conditions, one of which is dry haze and the other resembles a either of two distimet conditions, one of which is dry haze and the other resembles a
very light nuist in that it is attributable to moisture rather than dust. Haze is very light nist in that it is attributable to moisture rather than dust. Haze is
eapable of producing obscuration in almost any degree; it often admits of visibility capable of producing obscuration in almost any degree; it often admits of visibility
far beyond 2,200 yards, but dust haze on land is sometimes more dense than the densest fog. A slight impairment of visibility ean be eaused by true haze attended by unmistakable eridences of dustiness, but haze is probably as commonly recorded when moisture or unsteadiness in the lower atmosphere is the eausative agent.

The points to be emphasized are, tbat reeords of "haze" as they appear in ships observations eannot be interpreted as clearly as those of "fog" and "mist"; and also that the prescribed criteria in terms of distance have not been rigidy applied in use of any of the three terms
"Exeeptional visibility" in the Beaufort notation bas no exaet definition. Ships' observers have been instructed to make this reeord whenever distant objects (or the horizon) are more sharply defined than usual, indieating exceptional elearness Due to the faet that stormy winds and spray
measurement of the quantity of rainfoll on shipboard is precipitation at sea, the measurenent of the quantity of rainfall on shipboard is not generally feasible.
Underscoring the rain symbol in the record indicates heavy intensity distinctions are not statistically useful and the studies herein are confined to the mere occurrence of the designated rainy condition regardless of intensity.

Tbe three terms, "rain", "drizzle," and "passing showers" for various types of rainfall, seem to have been for the most part applied with a satisfaetory degree of uniformity by seamen. The distinction between "rain" and "drizzle" is one depending on the size of the drops. "Passing showers" are defined as of brief duration, in contrast with the more continuous character of tbe steady forms of rain.

There is in the records conclusive evidence that shipboard observers have not adhered to striet uniformity in use of the Beaufort symbols for showers and snow
The letter symbol "s", which should be confined to observations of snow, is some times found in reports from tropical latitudes where snow at sea level is an impossibility. This makes it clear that the symbol was reeorded erroneously to represent "showers", instead of the proper symbol " p " for "passing showers". There is also evidenee that the letter "In" has oceasionably been used for "baze" instead of "hail" to whieh it properly belongs
Cloud forms have been entered witb remarkable regularity in ships' records, and the eloud symbols are, as a rule, intelligible. The following abbreviations were commonly used
Cloud haras
Cirrus.......
Ciro-stratus
Cirro-stratus--
Cirto-cumulus
Alto-stratus.-
Alto-stratus
Ato-cumulus
Cumulus
Strato-cumulus-
(Cumulo-str
Stratus.
(Fracto-nimhus)
Cumulo-nimbus
umulo-nimbus_---
(Nimbo-cumulu)

Alefrote ab-
breveralion
(CS)
(CS)

Temperatures have been reported in Fahrenheit, centigrade, and Réaumur scales Wet bulb temperatures appear in a Fahrenbeit scale for purposes of compilation Wet bulb temperatures appear in a minor part of the observations but no relative umidity values have been reported or compited. The depression of the wet bulb the range of temperature der

Oceas	Januars	Fobruary	March	Apru	Mey	Juno
Nortb Atlantic	315,633	288, 222	318,489	314, 675	318, 087	310,418
South Atlantic.	26,948	24,765	29, 003	26, 841	27, 471	24, 137
North Pacife.	75, 330	71, 600	78, 331	77, 800	80, 496	79, 139
South Pacific.	20, 703	19, 838	21, 000	18,753	17,991	18,183
Nortb Indian.	10, 278	9,709	11,564	11,784	11, 872	10,528
South Indian	8,662	7,616	7,915	7,675	7, 578	8,098
Tot	457, 754	421,750	466, 302	457, 52,	463, 495	450, 503

TABLE 3.-Relative humidiy at different Fahrenheit temperatures

	Relatse humauly whee the depresslo of					At trampre.	Relative humidity when the deprosslon of the wet bulb thermometer i-				
	$1{ }^{\circ}$	${ }^{\circ}$	3°	-	$5{ }^{\circ}$		$1{ }^{\circ}$	${ }^{*}$	3^{3}	40	5°
23.	Percent	Percens	$\text { Percent }_{65}$	$\overline{\text { Percurt }} \begin{gathered} 54 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Precrin } \\ & 43 \end{aligned}$	53.	$\begin{gathered} \text { Percent } \\ 04 \end{gathered}$	$\begin{aligned} & \text { Percerat } \\ & 88 \end{aligned}$	$\begin{array}{\|c} \hline \text { Prrecta } \\ 83 \end{array}$	Precent	Perent
30	89	78	67	56	46	60	94	89	${ }_{83} 8$	78	73
32	89	79	59	59	49	82	94	89	84	79	74
34.	90	81	71	62	52	64	95	90	84	79	74
36	91	82	73	${ }^{6} 4$	53	68	95	90	85	80	75
38.	91	83	75	56	68	${ }^{68}$	95	90	85	so	76
40.	92	83	75	68	60	70	95	90	86	81	77
42.	92	85	77	69	62	72	95	91	86	s2	77
44.	93	85	78	71	53	74.	95	91	86	82	78
46	93	86	79	72	63	76	96	91	87	82	78
48	93	86	79	73	66	78	96	91	87	83	79
50.	93	87	so	74	67	80	96	91	87	83	79
52	94	87	81	75	69	83	96	92	88	84	80
54	94	88	s2	76	70	84	96	92	88	84	80
	94	88	82	76	71	86.	96	92	88	84	81

THE COMPILATION

The project began in 1934 with 6 months of activity under the Civil Works Administration, during which time more than 2 million marine observations were eonverted to punch eards for mach hine tahula tion, and an equal or greater number of manuscript observations were brought into sorted and organized files, thus making available In 1036 and study most of the Weather Bureau marine reeords then in hand. In 1936 and 1937 the Works Progress Administration (suecessor to CWA) whopted and financed in Louisiana a new project employing more than 200 workers,
whe previously organized material about 750,000 transeriptions of ocean weather observations for several of the later years and provided a staff for exhaustive trentment of all the observations upon whieh the eliarts in this atlas are based.

number of observations

The Weather Bureau material used in this atlas comprises a total of 5% million individual weather observations, mainly dated between 1885 and 1933. The obships saions have been gathered from all corners of the traveled oeecan and Netherlands, Frane many flags, although the United States, Great Britain,

There is an extremely wide variation in the volume of observations in diffe sea areas. The North Atlantic is mueh the richest in material; the extratropical North Pacific ranks next, but the volume of observations diminishes to relatively w values over large areas elsewhere and also in parts of the northern oeeans.
In order to make elear tbis variation in volume of observational material, a reeapitulation is given in table 4, hy months and oceans, and a more detailed showing for each 5 -degree subdivision for which datound were available 1 and 2 , which carry values total of observations for all months of the yearr and the second the teregrand smallest monthly totals to be found in ench unit area. The millions of weather observatio
lems of information, inasmueb as each compled involve many times as many ship's position, together with observations of wind dire includes date, time, and cure of air, sea, and wet buib, general state of weather, amount and kind of elouds, and often other miscellaneous items.

Not all observations are complete in every detail. Wind data appear in nearly all. Air and sea temperatures and estimates of cloud amount are present in aboul 90 percent of the reports. Records of cloud forms and general types of weather conditions are sornawhat less numerous, while wet-bulb readings are shown in mueh
less tban half of the observations.

Taken altogether, it is estim
were treated in the course of the that more than 40 million separate items of the work underlying this atlas, many of them over

METHODS OF COMPILATION

A question wil immediately present itself to the seientific mind: How can sued masses of observational material be handled by a temporary organization of people, not espeeially rrinind for critieal analysis, to produee statistical results of The whole operation was broken down tho used.
The Whole operation was broken down to elemental steps, eaeh supported by a simple worring form, so that rank-and-file workers followed simple tasks that beeame praetically automatic in performance. Every phase was thoroughly ehecked and
safeguarded; all computations were run at least twice to assure aecuracy. If item of data was, on the faee of it, open to reasonable doubt, either heeause of its indistinctness in entry on the record or through obvious departure from the data associated with it in time or place, that item was not included in the compilation.

Only the records of observations taken at or near the eingle hour, Greenwich noon, were admitted to the compiation. To facilitate interpretation with reference to tue corresponding local time, which varies with longitude, the local scale of time
corresponding to corresponding to Greenwich mean noon is shown at the bot tom border of each chart.

requency isograms

Most of tbe cbarts carry isograms that express the "percentage frequency" of he meteorological element depicted

In each unit area, for each month or season, there was available a definite umber of observations. Tbe percentage of this total tbat showed reports of a particular occurrence was computed. For example, if in a certain area tbe season sowed fog, the percentage frequency is 22 . Similarly, if in another area with 2,000 observations, 40 show wind forces of Beaufort 8 or bigher, the percentage frequency for gales of force 8 or more is 2 .

These percentage values were all placed on work cbarts in proper position, and ines were drawn through points of equal percentage, at intervals of 5 or 10 percent. These lines were transferred to finisbed drawings and tbe enclosed areas then shaded to depict graphically tbe relatire frequencies in various regions. Where cbarts carry a minimum line for frequency of 1 percent, the areas in which frequency is lower tban this value are usually labeled "Few or None."

Althougb tbe observations are all confined to a single hour of the day, tbe diurnal variations are generally small over tbe oceans and tbe frequency values may be Three-fourtbs of the charts carry isocrams deriv.
Three-fourtbs of the charts carry isograms derived from unsmootbed means; the remainder are based upon smootbed values whicb are averages of four adjacent squares, set down at tbe central point; this process smooths by increase of area and Charts on the following subjects are based on date.
her described: Gales of Beaufort force 7 or higher; exceptional borizontal risimanner described: Gales of Beaufort force 7 or higher; exceptional borizontal risi-
bility; rain forms; thunder and lightning; depression of the wet bulb; and cirriform
EIouds.
As far as possible, the cbarts bare been made self-explanatory, but close students of the data "ill raise many questions which cannot be answered by brief legends. Several major points, affecting the meaning of all the climatic cbarts, are
summarized below, followed hy a somewhat more detailed discussion of the several classes of data covered in the atlas.

1. In general the charts are based on observations taken at or near Greenwicb mean noon. The local time varies according to longitude; local time corresponding
to Greenwich noon is, therefore, shown at the bottom margin of tbe chart base. 2. Cbarted dsta are not extended in high latitudes to the extreme limit of the field of observations. Computations were made in all squares having 15 or more
obseryations in the monthly totals, but such weak material was regarded as trustworthy only wben supported in all directions by surrounding values. Therefore, the nortbern and southern margins of charted data actually lie inside the extreme limits of observation.

The data used for charting were carefully limited to reports from ships actually at sea; wbere identifiable, tbe observations recorded while in port were
excluded. Compilations are based upon relatively large unit areas, 5° in longitude by 5° in latitude. For tbese reasons the cbarts do not portray minor details (often locally important) of tbe climatic conditions near coast lines.

Special comments relating to the several classes of climatic data studied in detail are given helow in an effort to anticipate some of tbe many questions tbat
will naturally arise in the minds of careful students. will naturally arise in the minds of careful students.

studies of winds

Tbe values for winds are based upon the total number of servicecble wind observations and not, as is the case witb tbe studies of frequency of weatber and cloud types, upon the total number of observations.
"predominant winds." Predominance has been jud forces under the designation $\left(90^{\circ}\right)$ sbowing the most winds. This is not equivalent to the term "provailing xind," tbe meaning of which is usually restricted to the single point of the compass that sbows higbest wind frequency. This matter will be made clearer in the following

In producing cbarts 3 to 14 the tabulations for each 5° unit area to 16 points of tbe compass were reduced to percentages. Tbese were tben carefully examined to ascertain tbe quarter or quarters (groups of four contiguous points of tbe compass)
which held tbe largest fraction of the total wind rose. Where entirely separate which beld tbe largest fraction of the total wind rose. Where entirely separate
quarters yielded virtually equal percentages, note was made of tbe value for each quarters yielded virtually equal percentages, note was made of the value for each A single median arrow was entered in eacb square on tbe cbart to sbow tbe point of the compass tbat best represented the prevailing quarter. Where tbe perpoint of the compass tbat best represented the prevailing quarter. Where tbe perindicating higb constancy of wind direction, tbe sbaft of tbe arrow was doubled, and as tbe percentage values decreased, three graduations downward were used. 40 percent or less of tbe total wind records lay within tbe quarter indicated.

When all of tbe wind arrows were laid out in this manner for any given montb, the agreement in adjacent areas was so striking, especially in regions wbere winds sbow high constancy, that it was a simple furtber step to produce more generalized
lines of best fit whicb have been depicted on tbe cbarts as the predominant wind lines of best fit whicb have been depicted on tbe cbarts as the predominant wind
directions over tbe ocean areas. Tbese generalized lines bave also been drawn to sbow varying degrees of directional constancy. Tbe intensity varies from double ines, where more than 80 percent of the winds lie within 45° of the indicated median, to broken lines representing winds that blow less than 40 percent of tbe time within the quarter thus indicated.

The wbole wind rose was reduced to a single arrow only wben one outstandingly predominant quarter was found in the records. In many squares two and sometimes three arrows representing diverse quarters witb virtually equal wind frequency
were set down. Sucb multiple arrows were found grouped in many areas and their ere set down. Sucb multiple arrows were found grouped in many areas and tbeir presence led the construction of overlapping lines of generaized wind directions
distinct wind systems of sufficient frequency or permanence to make their appear ance in these statistical results. The system of graphics developed in these cbarts therefore, portrays important facts that are lost in the more rigorous treatment of
wind records hy reduction to resultants, or by selection of a single prevailing direction

Sbadings in two colors bave been added to the charts of predominant wind directions (cbarts 3-14) to distinguish areas dominated (60 percent or more of the time) by "lighter" or "stronger" winds, regarding as light winds those recorded a blowing witl force 0 to 3 , with winds of Beaufort force 4 and above in the stronge racket.

Tbe records were subjected to further careful analysis in order to obtain for each nit area the computed resultant wind for eacb montb. This was done by giving proper weight to the frequency and average force recorded at eacb point summation of vectors on plotting paper and carefully scaling off the resultant direction and force. Twelve monthly charts (Nos, 15-26) carry tbese resultant directions as arrows plotted for each square, witb resultant velocities indicated by shading, scaled in terms of Beaufort force units.

Tbe general similarity between the resuliants and the more roughly calculated predominant directions is worthy of notice. There is, as might be expected, also a tbose depicting the predominance of "higher" or "lower" wind forces in the first set of charts.

A set of seasonal charts (Nos. 27-30) shows the mean wind velocity in knots over the oceans. Tbese were obtained by

No discussion of winds would be complete without suitable reference to tbe occurrence of calms and tbe frequency of gales, which have special importance for ocean navigation. Data on the occurrence of dead calms, Beaufort 0, are presented in four charts (Nos. 31-34). Gales are sbown in two sets of charts (Nos. 35-50).

From tbe point of view of air narigation over tbe oceans, and particularly of flying operations from floating platforms such as aircraft carriers, winds of Beaufort force 7 are today regarded as the limiting velocity. For this reason montlly studies were

Since, however, tbe long-accepted definition of gales of importance to general surface navigation used Beanfort force 8 as the limit, another set of charts (Nos, 47-50) treats tbe frequency of winds of Beaufort 8 and higher, by seasons. Included in tbese latter charts are roses to show the distribution of sucb gales to eight points of tbe compass, based upon unit strip

VISIBILITY FACTORS

Modern navigation, more than ever before, is concerned with visibility factors over the oceans. Special care was taken to extract all information bearing upon fog, mist, baze, and tbe occurrence of exceptional horizontal visibility. The frequency of each
of the conditions as reported in Beaufort symbols in the records from ships is depicted of the conditions as reported
seasonally in cbarts 51-66.

Several points of indefiniteness or uncertainty attributable to the records of visibility factors are discussed above, in connection witb the Beaufort weatber notations (p. V). In the major sense, bowcver, tbe records are trustworthy indices to impor-
tant elements in atmospheric conditions tbat affect navigation over tbe oceans, and particularly as bearing on the operation of aircraft.

The cbarts of haze (Nos. 59-62) reveal tbe mixed cbaracter of tbe conditions reported under tbat designation. The areas of highest incidence are in all cases reported under tbat designation. The areas of highest incidence are in all cases are, bowever, many areas far rose from sources of dust or smoke wbicb show atmospheric instability and moisture contribute a minor part of the records of baze at

In connection with cbarts 63-66, based on the Beaufort symbol " v ," it might be assumed that exceptional horizontal visibility would be noted much more commonly by ships' navigators making landfalls, aspecially at nigbt when navigation ligbts are observed. The general appearance of tbe cbarts, bowever, indicates tbat tbere is no serious distortion in frequencies along cosst lines in areas where Greenwich noon observations are taken at night

CLOUD FORMS

Twenty-eigbt cbarts (Nos. 67-94) are devoted to thestudy of clouds. The average amount of cloud cover produced by all forms of clouds taken together is depicted seasonally, and supplementing these are studies of tbe frequency with which various cloud forms occur in the observations.

In a note on the face of tbe cbarts depicting the distribution of high and middle upon this class of observations.

All cirriform clouds are massed on one set of charts, and middle clouds (altocumulus and alto-stratus) on anotber; but low clouds, having a more important bearing upon aerial navigation over the oceans, are shown in greater detail. Low clouds are separated into four classes: (1) cumulus; (2) stratus and strato-cumulus taken togetber as similar ty pes commonly producing overcast conditions; (3) cumulonimbus, because of its value as an indicator of the most vigorous form of local conrection; and finally (4) nimbus, which is indefinite as to true cloud form but offers an interesting parallel for the next succeeding set of charts sbowing the frequency of rain.
Examination of tbe records indicates tbat cloud types were recorded in not more than two-thirds of tbe observations. The percentage values for frequency have been based on the total number of observations in hand, whetber cloud forms were reported in them or not; bence the true frequency of occurrence is undoubtedly provide a useful indication of the variation from place to place in the incidence of a provide a useful indication of the
given cloud type over the oceans.
Comment should be made, bowever, regarding one noteworthy discrepancy which appears on the cbarts sbowing frequency of cirniform clouds. Cirrus is shown
being much less frequent over the Pacific Ocean than over the Indian and At an ceans. This discrepancy probably arises from the difficulties of observing cirriform louds at night, since the region of deficiency lies mainly in the zone where Greenwich oon corresponds to night hours in local time.

Similar discrepancies do not appear on the charts of other cloud types, hence it ust be assumed that clouds at lower levels are observed at night more readily and ccurately than the high clouds.

RAINFALL AND THUNDERSTORMS

No measurements of the amount of rainfall at sea are available in the records reated, but the Beaufort notations were serviceable with respect to the occurrence the frequency of thundor and lightning.
Because of the confusion of meaning in the use of the symbol "e" (previously discussed in connection with the Beaufort weather notation), it has not been thought advisable to chart the material which purports to show the occurrence of snow, and it is probable tbat the material charted under the heading "passing showers" is seen excluded.

Dependence can be placed, however, in tbe relative index value of isograms for the various rain forms depicted in cbarts $95-106$, and especially in the first four showing the combined frequencies of all forms of rain. The latter should be compared witb the preceding set, showing the distribution of nimbus cloud observations. The radical differences between the geographical distributions of the several rainfall types made it advisable, bowever, to show (in charts 99-106) separate studies of the occurrence of steady rain, recorded as Beaufort " r ", as distinguished from assing sbowers, " p ", since these two types of precipitation are quite distinct.

The charts of tbe occurrence of thunder and lightning (charts 107-110) should be aterpreted in the light of the fact that the use of tbe symbol "?" for visible lightning, in addition to the symbol " t " for audible thunder, greatly increases the range of observation in areas where Greenwich mean noon corresponds to night-time hours. It is not beheved, bowever, tbat this tendency to distortion is highly important. Certain incomplete studies of Greenwich midnigbt observations, results from which noon material

Studies of temperatures

Only one phase of tbe temperature records, the average depression of the wet bulb, is treated on a world scale, in charts 111-114. Wet-bulb observations appear in a minor fraction of the total number, with tbe result that averages are based on meager data over most of tbe charted areas. Nevertheless, since very little is known of humidity over the oceans, it was deemed advisable to sbow the results on tbe barts. Tbe hasic averages of depression of the wet bulb, computed by months and 5 -degree unit areas, bad to be smoothed by fours in tbe manner heretofore described, and combi

For the North Atlantic and North Pacific Oceans, the data were adequate for credible monthly means of air temperature and temperature of tbe sea surface. These are slown in charts 115-126. Data were generally too meage

Some idea of relative humidities over the northern oceans can be obtained from data on charts for air temperature and depression of the wet bulb. Table 3 facilidata on charts for air

Seasonal differences betwecn sea and air temperature, derived from the monthly hes over the northern oceans, are sbown in cbarts 127-131.
Special studies of the relation between Greenwich noon and Grcenwicb midnight observations, based on almost half a million records, show that tbere is a daily variation of about $3^{\circ} \mathrm{F}$. in observations of the air temperature taken on shipboard. Deck heating under the sun tends to produce temperatures at midday or in tbe afternoon which average ahout $3^{\circ} \mathrm{F}$. higber than those taken between midnight and dawn. A smaller variation of similar character is found in the average values for sea-surface temperature; it appears to have a range of about $1^{\circ} \mathrm{F}$. Cbarts representing the differcnce between sea and air temperature have not been corrected for tbese factors, but in any case tbe more important featurcs, especially where
is mucb cooler than water, would not be materially altered by such corrections.

ACKNOWLEDGMENTS

For support and encouragement throughout the whole progress of this work from its inception at the beginning of 1934 until its completion, the writer makes rateful acknowledgment to the late Chief of the Weather Bureau, W. R. Gregg.

The material assistance rendered by I. R. Tannehill, Chief of tbe Marine Division of the Weather Bureau, in constant review of plans and results and in offering constructive criticism and suggestions has been of great value; acknowledgment is also due to Willis E. Hurd, and other members of the Marine Division
staff, many of them my former associates, for accepting without complaint a beavy burden of increased work resulting from the demands of this project for records from the central office files.

It should be repeated here that the results could not bave been obtained except by aid of large grants of finance from the President's Emergency Relief Program, which, first under the form of tbe Civil Works Administration, provided means for 6 months of preliminary activity; and, afterwards, under the Works Progress brought forth an extensive body of summarized material from which this publication elects only the most general parts.

Under the capable leadership of Leslie Smith, the W. P. A. project supervisor at New Orleans, a body of workers, at times nurabering as many as 250 , was organized and directed through the troublesome details involved in summarizing the tremendous volume of observations on which tbe work rests. Thanks are due, not oour problems, but also to many individual workers who displayed vision and entbusiasm, as well as faithful endeavor, in the performance of their tasks.

Chari 1

Chart 2

EXPLANATION Direction lines hased on domigant wind arrows compoted for each 5 -degree square, with relative constancy iadicated as follows: $\longrightarrow 81 \%$ and over: $\rightarrow 61-30 \% ;-\rightarrow 41-60 \% ; \rightarrow 25$ 40% of all winds from the quarter withas which the line is a median. Red undertint indicates predominance of Beaufort 0-3, hate undertint indicates stroager wiads, Beafort $\frac{4}{4}$ and bisher, domimant 60% or more af the time.

$\begin{array}{r}x+ \\ x+2 \\ x+2 \\ \hline\end{array}$

Chart 4

Chart ;

Chari 7

Chart 8

Chat !

Chart 10

Chart 12

Chart 14

(hart 1.5

Chart 16

Chart 17

Chart 18

(Chart 1!)

Chart 20

(Mart 21

Chart 24

Expunow

Chart 26

Charl 27

Chart 28

(halt ?

Chart 30

Chart :32

Chart 34

Chart 36

Chart 37

Chart 38

(harl :3:)

(hat 40

Chart 41

Chart 42

Chart 4:

Chart 44

Chart 45

Chart 46

Chart 48

Chart 49

$\cdots,{ }_{5}^{\infty}$

$-\infty 1$	a	0,
i	a,	

few or none

$0 \rightarrow-\infty$

0

none

Chart 50

(hatris

Chart is

Chart 54

EXPLANATION

Chart 57

Chart 58

Chart 59

Chart 60

Chart (il

Chart 62

(hiat 1is)

Chart 64

(hand 65)

Chart fif

Chart 67

Chart 68

Chant 70

Chart 71

Chart 72

Chart 73

Chart 74

(harl i.)

Chart 7

Chart is

Chatr 79

Chart

Chart 81

(hart 82

Chart 84

Chart 88

Chart 89

Chart 90

(hatr 91

Chart 92

Chart 94

Charl 9.5

Chart ! 96

Chart 97

Chart 98

Chart 99

Chart 100

EXPLATATION
Percentuge of an CME observaiosu ins., ohech the Beafiert cymbols " r " of " R " lor "rio" or "beary ram" occer.

Chart 102

Chart 10:3

Chart 104

Chart 105

Chart 106

Chart 107

Chart 108

Chart 110

Chart 111

Chart 112

Chart 116

Chart 118

$\begin{array}{llll}36.7 & 37.8 & 40.1 & 39.8 \\ 39.3 & 40.5 & 41.4 & 41.6\end{array}$

Chart 119

Chart 120

Chart 122

 | 82.4 | 82.0 | 81.9 | 81.3 | 80.7 | 795 | 77.6 | 784 | 76.7 | 75.0 | 748 | 72.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 82.3 | 824 | 821 | 816 | 日11 | 805 | 794 | 797 | 798 | 794 | 805 | | $\begin{array}{llllllllllll}820 & 81.7 & 81.5 & 81.1 & 799 & 792 & 77.7 & 775 & 78.2 & 76.7 & 789\end{array}$ $\begin{array}{llllllllllll}81.9 & 81.7 & 81.8 & 815 & 80.7 & 79.8 & 80.1 & 79.5 & 789\end{array}$ $\begin{array}{lllllllll}819 & 818 & 80.7 & 799 & 79.7 & 792 & 78.9 & 765 \\ 803 & 80.5 & 80.3 & 79.1 & 792 & 77.9 & 78.0 & 75.9\end{array}$

 $\begin{array}{lllllllll}83.1 & 797 & 81.6 & 81.3 & 80.4 & 826 & 81.9 \\ 820 & 80.9 & 225 & 829 & 926 & 834 & 831\end{array}$

人一 $-14=-2)^{2}$

 $\begin{array}{llllllllll}50.6 & 51.2 & 496 & 513 & 525 & 543 & 56.0 & 572 & 57.8 & 58.0\end{array}$ $\begin{array}{lllllllll}49.5 & 53.0 & 55.8 & 569 & 583 & 599 & 612 & 62.0 & 626 \\ 467 & 51.6 & 55.1 & 55.7 & 57.2 & 58.9 & 60.0 & 60.6 & 60.8\end{array}$ $\begin{array}{lllllllllll}596 & 610 & 58.6 & 568 & 613 & 643 & 644 & 642 & 642 & 644 & 642\end{array}$ | 697 | 67.3 | 690 | 69.0 | 68.6 | 69.3 | 71.1 | 70.9 | 72.1 | 71.5 | 70.3 | 69.1 | 69.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 699.7 | 656 | 685 | 688 | 68.0 | 69.8 | 710 | 70.1 | 70.7 | 699 | 68.7 | 674 | 672 | $\begin{array}{lllllllllllll}76.0 & 76.9 & 77.4 & 77.8 & 775 & 77.7 & 77.5 & 769 & 75.8 & 74.7 & 740 & 73.0 & 724\end{array}$ $\begin{array}{llllllllllllllllll}76.0 & 77.6 & 78.3 & 77.9 & 77.3 & 77.2 & 766 & 75.6 & 74.4 & 73.3 & 72.7 & 71.4 & 70.4\end{array}$ $\begin{array}{llllllllllllll}80.4 & 81.1 & 80.9 & 80.8 & 80.4 & 802 & 80.2 & 795 & 78.4 & 77.8 & 766 & 75.0 & 74.6 \\ 80.9 & 80.5 & 80.6 & 80.1 & 79.8 & 793 & 79.1 & 78.1 & 77.1 & 76.5 & 74.4 & 72.7 & 71.4\end{array}$ $\begin{array}{llllllllllllllll}821 & 823 & 82.2 & 817 & 815 & 809 & 807 & 80.2 & 78.7 & 770 & 764 & 756 & 73.5 \\ 82.3 & 82.1 & 81.8 & 81.5 & 80.8 & 80.2 & 79.7 & 78.4 & 768 & 75.5 & 745 & 72.3 & \end{array}$ $\begin{array}{llllllllllllll}82.3 & 82.1 & 81.8 & 81.5 & 80.8 & 80.2 & 79.7 & 78.4 & 768 & 75.5 & 745 & 72.3\end{array}$ $\begin{array}{llllllllllllll}82.3 & 822 & 82.5 & 82.0 & 81.2 & 80.6 & 791 & 80.0 & 78.6 & 77.7 & 77.2 & 75.1 \\ 82.4 & 820 & 819 & 81.3 & 807 & 795 & 77.6 & 784 & 7.5 & 750 & 74 . & 728\end{array}$

Chart 124

Chart 126

$\begin{array}{llll}331 & 337 & 387 & 370 \\ 374 & 383 & 422 & 421\end{array}$

$\begin{array}{lllllllll}372 & 37.5 & 38.1 & 390 & 40.7 & 42.0 & 436 & 44.9\end{array}$ | 33.4 | 33.6 | 35.2 | 358 | 36.9 | 375 | 382 | 38.8 | 399 | 402 | 412 | 428 | 43.8 | 441 | 44.6 | 46.6 | 478 | $\boxed{461}$ |
| :--- |
| 368 | 300 | 39 | 39 | 397 | 402 | 40 | 408 | 417 | 420 | 430 | 440 | 448 | 457 | 451 | 493 | 492 | 485 |

| 371 | 36.0 | 37.1 | 38.7 | 391 | 40.1 | 41.8 | 447 | 45.1 | 46.5 | 469 | 466 | 476 | 474 | 486 | 493 | 50.8 | 52.8 | 525 | 52.3 | $[49.8$ |
| :--- |
| 7.2 | 45.1 | 42.0 | 44.5 | 44.7 | 44.7 | 47.1 | 497 | 490 | 49.5 | 49.2 | 49.4 | 497 | 49.5 | 50.5 | 50.8 | 52.0 | 54.2 | 54.6 | 526 | 51.4 |

 $\begin{array}{lllllllllllllllllllllllll}50.4 & 532 & 553 & 550 & 57.6 & 605 & 622 & 62.9 & 63.6 & 642 & 64.0 & 641 & 63.1 & 625 & 625 & 630 & 635 & 64.8 & 639 & 642 & 62.8 & 60.9 & 59.8 & 573 & 58.4 \\ 548 & 61.7 & 63.1 & 63.1 & 65.1 & 66.5 & 66.9 & 663 & 66.6 & 66.2 & 66.2 & 66.1 & 650 & 643 & 645 & 647 & 65.1 & 66.0 & 65.3 & 659 & 646 & 625 & 61.3 & 58.4 & 60.0\end{array}$

$69.3 \quad 65.4 \quad 698 \quad 70.9$ $\begin{array}{lll}63.3 & 65.4 & 698 \\ 707 & 70.9 \\ 70 & 742 & 750\end{array}$ $\begin{array}{ll}128 & 70.4 \\ 71.3 & 719\end{array}$ 47T8 $\begin{array}{llll} & 537\end{array}$ $\begin{array}{lllllllllll}39.0 & 36.5 & 367 & 37.7 & 445 & 493 & 506 & 519 & 528 & 532 & 52.9\end{array}$ $\begin{array}{lllllllllll}42.1 & 382 & 384 & 39.7 & 50.2 & 546 & 54.0 & 543 & 545 & 542 & 537\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}748 & 749 & 769 & 77.1 & 786 & 78.9 & 786 & 78.3 & 78.5 & 779 & 77.1 & 76.2 & 75.9 & 754 & 75.0 & 748 & 75.0 & 738 & 73.1 & 721 & 71.2 & 704 & 69.0 & 68.6 & 690 & 71.3 & 752\end{array}$ $\begin{array}{llllllllllllllllll}71.7 & 738 & 752 & 73.3 & 75.8 & 766 & 768 & 776 & 76 & 751 & 760 & 755 & 750 & 743 & 737 & 723 & 696\end{array}$

 | 803 | 81.6 | 81.8 | 82.0 | 81.5 | 81.8 | 81.6 | 81.8 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 821 | 81.8 | 81.4 | 81.7 | | | 81.9 | 82.3 | 82.6 |
| 82.5 | 82.1 | 82.9 | 80.8 | | | 82.7 | 82.9 | 82.5 |

Chạrt 1:27

Chart 128

Chart 129)

Chart 130

